Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Cell Biochem ; 123(3): 673-690, 2022 03.
Article in English | MEDLINE | ID: covidwho-1626208

ABSTRACT

COVID-19 is a sneaking deadly disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid increase in the number of infected patients worldwide enhances the exigency for medicines. However, precise therapeutic drugs are not available for COVID-19; thus, exhaustive research is critically required to unscramble the pathogenic tools and probable therapeutic targets for the development of effective therapy. This study utilizes a chemogenomics strategy, including computational tools for the identification of viral-associated differentially expressed genes (DEGs), and molecular docking of potential chemical compounds available in antiviral, anticancer, and natural product-based libraries against these DEGs. We scrutinized the messenger RNA expression profile of SARS-CoV-2 patients, publicly available on the National Center for Biotechnology Information-Gene Expression Omnibus database, stratified them into different groups based on the severity of infection, superseded by identification of overlapping mild and severe infectious (MSI)-DEGs. The profoundly expressed MSI-DEGs were then subjected to trait-linked weighted co-expression network construction and hub module detection. The hub module MSI-DEGs were then exposed to enrichment (gene ontology + pathway) and protein-protein interaction network analyses where Rho guanine nucleotide exchange factor 1 (ARHGEF1) gene conjectured in all groups and could be a probable target of therapy. Finally, we used the molecular docking and molecular dynamics method to identify inherent hits against the ARHGEF1 gene from antiviral, anticancer, and natural product-based libraries. Although the study has an identified significant association of the ARHGEF1 gene in COVID19; and probable compounds targeting it, using in silico methods, these targets need to be validated by both in vitro and in vivo methods to effectively determine their therapeutic efficacy against the devastating virus.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/genetics , Gene Ontology , Humans , Molecular Docking Simulation , Rho Guanine Nucleotide Exchange Factors , SARS-CoV-2/genetics
2.
J Nutr Biochem ; 90: 108571, 2021 04.
Article in English | MEDLINE | ID: covidwho-1001603

ABSTRACT

Vitamin D is customarily involved in maintaining bone and calcium homeostasis. However, contemporary studies have identified the implication of vitamin D in several cellular processes including cellular proliferation, differentiation, wound healing, repair and regulatory systems inclusive of host defence, immunity, and inflammation. Multiple studies have indicated corelations between low serum levels of vitamin D, perturbed pulmonary functions and enhanced incidences of inflammatory diseases. Almost all of the pulmonary diseases including acute lung injury, cystic fibrosis, asthma, COPD, Pneumonia and Tuberculosis, all are inflammatory in nature. Studies have displayed strong inter-relations with vitamin D deficiency and progression of lung disorders; however, the underlying mechanism is still unknown. Vitamin D has emerged to possess inhibiting effects on pulmonary inflammation while exaggerating innate immune defenses by strongly influencing functions of inflammatory cells including dendritic cells, monocyte/macrophages, T cells, and B cells along with structural epithelial cells. This review dissects the effects of vitamin D on the inflammatory cells and their therapeutic relevance in pulmonary diseases. Although, the data obtained is very limited and needs further corroboration but presents an exciting area of further research. This is because of its ease of supplementation and development of personalized medicine which could lead us to an effective adjunct and cost-effective method of therapeutic modality for highly fatal pulmonary diseases.


Subject(s)
Respiratory Tract Diseases/epidemiology , Vitamin D Deficiency/epidemiology , Vitamin D/blood , Acute Lung Injury/epidemiology , Animals , Asthma/epidemiology , Cystic Fibrosis/epidemiology , Humans , Incidence , Inflammation/epidemiology , Pneumonia/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiratory Tract Diseases/drug therapy , Tuberculosis/epidemiology , Vitamin D/administration & dosage , Vitamin D/metabolism , Vitamin D Deficiency/drug therapy
3.
Gene ; 762: 145057, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-712916

ABSTRACT

COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools, plausible drug targets, committed to the development of efficient therapy. Host-pathogen interactions via host cellular components is an emerging field of research in this respect. miRNAs have been established as vital players in host-virus interactions. Moreover, viruses have the capability to manoeuvre the host miRNA networks according to their own obligations. Besides protein coding mRNAs, noncoding RNAs might also be targeted in infected cells and viruses can exploit the host miRNA network via ceRNA effect. We have predicted a ceRNA network involving one miRNA (miR-124-3p), one mRNA (Ddx58), one lncRNA (Gm26917) and two circRNAs (Ppp1r10, C330019G07RiK) in SARS-CoV infected cells. We have identified 4 DEGs-Isg15, Ddx58, Oasl1, Usp18 by analyzing a mRNA GEO dataset. There is no notable induction of IFNs and IFN-induced ACE2, significant receptor responsible for S-protein binding mediated viral entry. Pathway enrichment and GO analysis conceded the enrichment of pathways associated with interferon signalling and antiviral-mechanism by IFN-stimulated genes. Further, we have identified 3 noncoding RNAs, playing as potential ceRNAs to the genes associated with immune mechanisms. This integrative analysis has identified noncoding RNAs and their plausible targets, which could effectively enhance the understanding of molecular mechanisms associated with viral infection. However, validation of these targets is further corroborated to determine their therapeutic efficacy.


Subject(s)
Coronavirus Infections/genetics , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Pneumonia, Viral/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Animals , Betacoronavirus , COVID-19 , Humans , Mice , MicroRNAs/genetics , Pandemics , Protein Interaction Mapping , RNA, Messenger/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL